Skip to content

ไน ้ข˜ๅ…ซ

1

ๆ ทๆœฌๅนณๅ‡: \(\mu=E X(t)=E X_0 E(-1)^{N(t)}=0\)

ๆ—ถ้—ดๅนณๅ‡ \(X_T=\frac{1}{T} \int_0^T X_0(-1)^{N(t)} d t=0\) (ๅฏน็งฐ)

ไบŽๆ˜ฏ \(\tau = \lim\limits_{T\to\infty} X_T=0\)

ๆ•… \(\tau=\mu\).ไปŽ่€Œๆปก่ถณๅ‡ๅ€ผ้ๅŽ†ๆ€งใ€‚

2

\[ \begin{aligned} & \mu=E X(t)=e^{-\alpha t / 2} E B\left(e^{\alpha t}\right)=0 . \\ & X_T=\frac{1}{T} \int_0^{\top} e^{-\alpha t/2} B\left(e^{\alpha t}\right) d t=0 \implies \tau = 0 \\ & \Rightarrow \tau=\mu . \end{aligned} \]

3

\[ E X_n=\begin{cases} 0 & n=0 \\ \lambda E x_{n-1} & n \geq 1 \end{cases} \]

\(\Rightarrow \mu=E X_n=0\)

$$ X_n=Z_n+\lambda Z_{n-1}+\cdots+\lambda^n Z_0 $$ \(r_X(k)=E X_0 X_k=E Z_0\left(Z_n+\cdots+\lambda^k Z_0\right)=\lambda^k E Z_0^2=\frac{\lambda^k \sigma^2}{1-\lambda^2}\)

\(\lim\limits_{k \rightarrow \infty} r_X(k)=0=\mu^2\)

ๆ•… \(X\) ๆปก่ถณๅ‡ๅ€ผ้ๅŽ†ๆ€ง

4

ๆ˜พ็„ถ \(X_n\) ๅนณ็จณ

\(\mu_X=E X_n=E\left(\frac{\xi_n+\cdots+\xi_{n-k}}{k+1}\right)=\mu\).

ๅ– \(l>2k\) ๅ……ๅˆ†ๅคง,ๅˆ™ๆœ‰

\[r_X(k) = E\left(\frac{\xi_k+\cdots+\xi_{0}}{k+1}\right)\left(\frac{\xi_{k+l}+\cdots+\xi_l}{k+1}\right)=E\xi_k E\xi_{k+l}=\mu^2\]

ไบŽๆ˜ฏ

\[\lim\limits_{l\to\infty}r_X(l)=\mu_X^2=\mu^2\]

ไปŽ่€Œๆปก่ถณๅ‡ๅ€ผ้ๅŽ†ๆ€ง

5

ๆ•ฐๅˆ†็Ÿฅ่ฏ†. \(x_n \to a \implies \frac{1}{n} \sum\limits_{i=1}^n x_i \to a\).

\(X\) ๆปก่ถณๅ‡ๅ€ผ้ๅŽ†ๆ€ง \(\implies r_x(k) \rightarrow \mu^2 \implies \frac{1}{n} \sum\limits_{k=1}^n r_x(k)=\mu^2\)

ๅ่ฟ‡ๆฅ,ๅ› ไธบ

\(\frac{1}{n^2} \sum\limits_{k=1}^n\left(r_{X}({k})-\mu^2\right) \leq \frac{1}{n^2} \sum\limits_{k=1}^{n} k\left(r_X(k)-\mu^2\right) \leq \frac{1}{{n}^2} \sum\limits_{{k}=1}^{{n}} {n}\left(r_{X}({k})-\mu^2\right)\)

ไธค่พนๅŒๆ—ถๅ–ๆž้™ๅพ—ๅˆฐๅทฆๅณไธค่พนๅ‡ไธบ 0 ,ๆ‰€ไปฅ

\[\lim _{{n} \rightarrow \infty} \frac{1}{{n}^2} \sum_{{k}=1}^{{n}} {k}\left(r_{{X}}({k})-\mu^2\right)=0\]

ไบŽๆ˜ฏ

\[\frac{1}{n^2}\sum\limits_{k=1}^n (n-k)(r_X(k)-\mu^2)\to 0\]

ไปŽ่€Œๆปก่ถณๅ‡ๅ€ผ้ๅŽ†ๆ€ง