Skip to content

ไน ้ข˜ไธƒ

1.

(1): \(B(h(t))\sim \mathcal{N}(0,h(t))\implies E B(h(t))=0, Var B(h(t))=h(t)\).

(2): \(\forall t\). \(X(t)\) ไธบๆญฃๆ€่ฟ‡็จ‹, ไธ” \(E{X}(t)=0\). \(Var X(t)=h(t)\). ๆ•… \(B(h(t)) \overset{d}{=} X(t)\).

(3): ๅ…ˆ่ฎก็ฎ— 2-็ปดๆƒ…่‡ดใ€‚ $$ \text{Cov}(X(s),X(t))=E\left(\frac{st}{h(s)h(t)}\right)^{-1/2}B(s)B(t)=\sqrt{\frac{h(s)h(t)}{st}}s $$

\[ \text{Cov}(B(h(s)),B(h(t))) = h(s) \]

\(\forall k .0<t_1<\cdots<t_k\).

\[ (X(t_1),X(t_2),\cdots,X(t_k))\overset{d}{=}(\mathcal{N}(0,ct_1),\cdots,\mathcal{N}(0,ct_k))\overset{d}{=}(B(h(t_1)),\cdots,B(h(t_k))) \]

ไปŽ่€Œๅฝ“ไธ”ไป…ๅฝ“ \(h(t)=ct\) ๆ—ถๅŒๅˆ†ๅธƒใ€‚

2.

(1): \(EX(t)=a e^{-\alpha t},Var X(t)=\sigma^4 t\).

(2): \(\forall t_1<t_2<\cdots<t_k\).

\[ (X(t_1),X(t_2),\cdots,X(t_k))\overset{d}{=}(\mathcal{N}(a e^{-\alpha t_1},\sigma^4 t_1),\cdots,\mathcal{N}(a e^{-\alpha t_k},\sigma^4 t_k)) \]

ๆ•…ไธบๆญฃๆ€่ฟ‡็จ‹ใ€‚

(3): \(X(t)-X(s)=a e^{-\alpha t}-a e^{-\alpha s}+\sigma^2 B(t-s)\).

็‹ฌ็ซ‹ไธๅนณ็จณ

3

ๅทฒ็ป็Ÿฅ้“ \(M(t)\overset{d}{=} |B(t)|\).

\[ X(t)=M(t)-B(t)=\max\limits_{0\leq s\leq t}B(s)-B(t)\overset{d}{=}\max\limits_{0\leq s\leq t}(B(s)-B(t)) \overset{d}{=} -\min\limits_{0\leq s\leq t}(B(t)-B(s))=\max\limits_{0\leq s\leq t}B(s) \]

4

\(Y(t)=\int_0^t(x+\mu s+\sigma B(s)) d s=x t+\frac{1}{2} \mu t^2+\sigma \int_0^t B(s) d s\)

\(\implies EY(t)=xt+\frac12 \mu t^2\)

\(Var Y(t)=\sigma^2 \int_0^t\int_0^tEB(u)B(v)dudv=\frac13 \sigma^2t^3\)

5

\(Y(t)=\int_0^t B(s)ds\sim \mathcal{N}(0,\frac{t^3}{3})\)

\(\implies EX(t)=Ee^{Y(t)}=\int_R e^y \frac{1}{\sqrt{2 \pi \frac{1}{3} t^3}} e^{-\frac{y^2}{\frac{2}{3} t^3}} d y=e^{t^3 / 6}\)

6

\(\tau_a=\inf \{t:X(t)=a \} \overset{d}{=} \inf\{ t:B(t)=\ln\frac{a}{x} \}\)

\(\implies P(\tau_a=t)=f_{\tau_a}(t)=\frac{|\ln\frac{a}{x}|}{\sqrt{2\pi t^3}} e ^{ -\frac{(\ln\frac{a}{x})^2}{2t}}\)

\(\implies E\tau_a=\infty\)

7

ไปค \(F(u)\) ไธบๅ…ถๅˆ†ๅธƒๅ‡ฝๆ•ฐ

\[F(u)=P(U\leq u)=P(-\sqrt{u}\leq \sin\theta\leq \sqrt{u})=\frac{2\arcsin\sqrt{u}}{\pi},u\in (0,1)\]